A New Method for Ranking Intuitionistic Fuzzy Numbers
نویسندگان
چکیده
In this paper the ranking method for intuitionistic fuzzy numbers is studied. The authors first define a possibility degree formula to compare two intuitionistic fuzzy numbers. In comparison with Chen and Tan’s score function, the possibility degree formula provides additional information for the comparison of two intuitionistic fuzzy numbers. Based on the possibility degree formula, the authors give a possibility degree method to rank n intuitionistic fuzzy numbers, which is used to rank the alternatives in multicriteria decision making problems.
منابع مشابه
A novel parametric ranking method for intuitionistic fuzzy numbers
Since the inception of intuitionistic fuzzy sets in 1986, many authors have proposed different methods for ranking intuitionistic fuzzy numbers (IFNs). How ever, due to the complexity of the problem, a method which gives a satisfactory result to all situations is a challenging task. Most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with hum...
متن کاملA Compromise Ratio Ranking Method of Triangular Intuitionistic Fuzzy Numbers\ and Its Application to MADM Problems
Triangular intuitionistic fuzzy numbers (TIFNs) is a special case of intuitionistic fuzzy (IF) set and the ranking of TIFNs is an important problem. The aim of this paper is to develop a new methodology for ranking TIFNs by using multiattribute decision making methods (MADM). In this methodology, the value and ambiguity indices of TIFNs may be considered as the attributes and the TIFNs in compa...
متن کاملMultiple attribute decision making with triangular intuitionistic fuzzy numbers based on zero-sum game approach
For many decision problems with uncertainty, triangular intuitionistic fuzzy number is a useful tool in expressing ill-known quantities. This paper develops a novel decision method based on zero-sum game for multiple attribute decision making problems where the attribute values take the form of triangular intuitionistic fuzzy numbers and the attribute weights are unknown. First, a new value ind...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملA Data Envelopment Analysis Model with Triangular Intuitionistic Fuzzy Numbers
DEA (Data Envelopment Analysis) is a technique for evaluating the relative effectiveness of decision-making units (DMU) with multiple inputs and outputs data based on non-parametric modeling using mathematical programming (including linear programming, multi-parameter programming, stochastic programming, etc.). The classical DEA methods are developed to handle the information in the form of cri...
متن کاملA BI-OBJECTIVE PROGRAMMING APPROACH TO SOLVE MATRIX GAMES WITH PAYOFFS OF ATANASSOV’S TRIANGULAR INTUITIONISTIC FUZZY NUMBERS
The intuitionistic fuzzy set has been applied to game theory very rarely since it was introduced by Atanassov in 1983. The aim of this paper is to develop an effective methodology for solving matrix games with payoffs of Atanassov’s triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concepts and ranking order relations of Atanassov’s TIFNs are defined. A pair of bi-object...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJKSS
دوره 2 شماره
صفحات -
تاریخ انتشار 2011